
Learning Compiler Pass Orders using Coreset 
and Normalized Value Prediction

Youwei Liang*, Kevin Stone* , Ali Shameli, Chris Cummins, Mostafa Elhoushi, 
Jiadong Guo, Benoit Steiner, Xiaomeng Yang, Pengtao Xie, Hugh Leather, 

Yuandong Tian

*co-first author



Problem Definition: Compiler Pass Ordering

• Compile a program with a sequence of optimization pass: LLVM

• Exemplar passes

• Dead code elimination: e.g., remove assignments that are never used

• Order matters

• Some passes facilitates the use of some other passes

• -reg2mem

• Some passes clean up the code after using certain passes

• -dce

• In our paper, we target at minimizing code size

IR: intermediate representation

Front End Middle End Back End
Source
 Code

Machine
 Code

IR IR



Challenges in Compiler Pass Ordering

• Manual optimization by humans

• Expert passes: -O3, -Oz

• Prior machine learning methods

• Require an excessive budget at compile time (need to enumerate many passes)

• Need to try many passess

• Fail to generalize to unseen programs

• Train/test on the same benchmark programs

• Very small test set

Source 
code

Human 
experts

Sequences 
of passes

Time-consuming

Expert knowledge

O3/Oz
Sequences 
of passes

A fixed sequence of passes

not be optimal for some programs



Key Ideas of Our Approach

• Key ideas

• We don’t search good passes sequentially

• Directly find a universal core set of pass sequences (termed coreset)

• Make decision on top of this different action space to avoid the challenge of sparse reward

• The coreset

• Optimizes most programs

• Requires only an upfront search cost

• The policy

• Learns to predict the relative performance of coreset sequences

• Apply the optimal coreset sequence to compile new programs at inference



Environment Setup

• Perform pass optimization with CompilerGym

• CompilerGym - https://compilergym.com/

• It provides a reinforcement learning (RL) environment, using similar APIs to OpenAI Gym

• Call the APIs to obtain features/observations of a program

• At each step, choose one of the 124 passes to apply to a program. Then environment provides the new 
size after applying the pass.

• Problem setup

• Given a budget in terms of the number of passes, say 45, maximize the size reduction compared to the 
initial program

• Allow to cache the intermediate programs at each step, so the maximum size reduction can be obtained 
in middle

https://compilergym.com/


Our Method: An Overview

• Coreset Optimization

• Finding 𝑛 candidate pass sequences

• Finding the coreset S with a greedy 
algorithm

• Normalized Value Prediction

• Given program feature, train a GNN 
model to output the probabilities of 
selecting a sequence in the coreset



Coreset Optimization

• For each program, perform random search to find candidate 
pass sequences

• Construct a reward matrix 𝑅 ∈ ℝ𝑁×𝑀: size reduction of 𝑁 =
17500 program against 𝑀 = 17500 candidate pass 
sequences

• Objective:

• 𝐾 = 50: cardinality of coreset

• Initialize 𝑆 = ∅

• At each step, add a new pass sequence index into 𝑆

Key finding: a lot of programs can be optimized by a small number of pass sequences



Program encoding

• Input feature: ProGraML graph

• Encoder: graph neural network (GNN)

• The model selects a few pass sequences from the coreset 
to try out in the program

• This is DIFFERENT from the common practice of 
selecting a single pass at a time

• We also tried another input feature: Autophase vector

• Consist of the number of certain instructions, etc

• Use MLP for encoding

ProGraML 
Graph

GNN
50-way probabilities for 
each pass sequence in 

the coreset

Type graph



Normalized Value Prediction

• Normalize the rows of the reward matrix on the coreset

• 𝑇 is a temperature

• Loss: cross entropy between model output 𝑎𝑝 and the 
normalize values 𝑣𝑝

Key finding: a program can be optimized by several 
pass sequences (resulting in same size reduction)

Coreset index

A “slim” reward matrix

(𝑝 denotes a program)



Experiments

• Datasets: a large number of diverse programs

• Allow maximum of 45 compilation passes

• Evaluation: how much the algorithm is better 
than Oz in terms of code size (IR instruction 
count)

• 𝐼𝑝
𝑂𝑧: resulting IR instruction count of program 𝑝 

after applying -𝑂𝑧

• 𝐼𝑝
𝜋𝜃: resulting IR instruction count of program 𝑝 

using algorithm 𝜋𝜃

• Mean Improvement Over Oz

• Geometric Mean Improvement Over Oz



Experiments

• Baselines

• Oracle: the best in the coreset

• Top-45: only allow 45 steps in using the coreset

• RL-PPO: proximal policy optimization

• Q-value-rank: directly learn the values of the pass 
sequences in the coreset

• BC: behavior cloning; classification over the 
coreset

• NVP: normalized value prediction

• For Top-45, Q-value-rank, BC, and NVP

• The budget of 45 steps allows us to use roughly 4 
pass sequences; roll out them one by one

• Truncate the last sequence applied (not to exceed 
the budget)

• GNN: GCN, GGC, GIN, GAT, GEAN



Analysis

• Learned Q values



Ablations

• Temperature

• A smaller temperature works better

• Essentially, it becomes a multi-class 
classification for a smaller temperature 


	Slide 1: Learning Compiler Pass Orders using Coreset and Normalized Value Prediction
	Slide 2: Problem Definition: Compiler Pass Ordering
	Slide 3: Challenges in Compiler Pass Ordering
	Slide 4: Key Ideas of Our Approach
	Slide 5: Environment Setup
	Slide 6: Our Method: An Overview
	Slide 7: Coreset Optimization
	Slide 8: Program encoding
	Slide 9: Normalized Value Prediction
	Slide 10: Experiments
	Slide 11: Experiments
	Slide 12: Analysis
	Slide 13: Ablations

