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Problem Definition: Compiler Pass Ordering

» Compile a program with a sequence of optimization pass: LLVM

Source

Code Front End

« Exemplar passes

Back End

Machine

Code

« Dead code elimination: e.g., remove assignments that are never used

e Order matters

» Some passes facilitates the use of some other passes

e -reg2mem

« Some passes clean up the code after using certain passes

e -dce

* In our paper, we target at minimizing code size

IR: intermediate representation




Challenges in Compiler Pass Ordering

« Manual optimization by humans

Time-consuming ’
Source w | Human f Sequences
code J experts of passes

Expert knowledge W

» EXxpert passes: -03, -0z

A fixed sequence of passes ’
03/0z

f Sequences
of passes

not be optimal for some programs

 Prior machine learning methods
* Require an excessive budget at compile time (need to enumerate many passes)
* Need to try many passess
« Fail to generalize to unseen programs
 Train/test on the same benchmark programs
* Very small test set



Key Ideas of Our Approach

» Key ideas
* We don’t search good passes sequentially
« Directly find a universal core set of pass sequences (termed coreset)
« Make decision on top of this different action space to avoid the challenge of sparse reward

» The coreset
« Optimizes most programs
* Requires only an upfront search cost
* The policy
 Learns to predict the relative performance of coreset sequences
* Apply the optimal coreset sequence to compile new programs at inference




Environment Setup

 Perform pass optimization with CompilerGym

« CompilerGym - https://compilergym.com/
* [t provides a reinforcement learning (RL) environment, using similar APIs to OpenAl Gym
« Call the APIs to obtain features/observations of a program

At each step, choose one of the 124 passes to apply to a program. Then environment provides the new
size after applying the pass.

* Problem setup
» Given a budget in terms of the number of passes, say 45, maximize the size reduction compared to the
initial program
 Allow to cache the intermediate programs at each step, so the maximum size reduction can be obtained
in middle



https://compilergym.com/

Our Method: An Overview

» Coreset Optimization
» Finding n candidate pass sequences
 Finding the coreset S with a greedy
algorithm
» Normalized Value Prediction

» Given program feature, train a GNN
model to output the probabilities of
selecting a sequence in the coreset
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Coreset Optimization

For each program, perform random search to find candidate
pass sequences

Construct a reward matrix R € RV*M: size reduction of N =
17500 program against M = 17500 candidate pass
sequences

Objective:

max J(S) = maxr;.
max (8)=>_ j
K = 50: cardinality of coreset
Initialize S = @

At each step, add a new pass sequence index into S

Jt = arg max J(S;—1 U{j})
JESt—1

Reward matrix

Program index

Pass sequence index

Key finding: a lot of programs can be optimized by a small number of pass sequences




Program encoding

* Input feature: ProGraML graph
* Encoder: graph neural network (GNN)

» The model selects a few pass sequences from the coreset
to try out in the program

« This is DIFFERENT from the common practice of
selecting a single pass at a time

50-way probabilities for
GNN each pass sequence in

[ ProGraML
the coreset

Graph

» We also tried another input feature: Autophase vector
 Consist of the number of certain instructions, etc
« Use MLP for encoding
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Normalized Value Prediction

 Normalize the rows of the reward matrix on the coreset

A “slim” reward matrix

v? = Softmax(r?/T)
(p denotes a program)

» T is atemperature

 Loss: cross entropy between model output a? and the
normalize values v?

Program index

K
L(a?,v?) = — va log a;
j=1

Coreset index

Key finding: a program can be optimized by several

pass sequences (resulting in same size reduction)




Experiments

« Datasets: a large number of diverse programs

 Allow maximum of 45 compilation passes

 Evaluation: how much the algorithm is better
than Oz in terms of code size (IR instruction

count)

. Igz: resulting IR instruction count of program p

after applying -0z

. I;T@: resulting IR instruction count of program p

using algorithm mg
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Type Dataset Train Val Test
anghabench-vl 707,000 1,000 2,000

blas-v0 133 28 29

github-v0 7,000 1,000 1,000

linux-v0 4,906 1,000 1,000

opencv-v(Q 149 32 32

Uncurated 41041 7000 1,000 1,000
tensorflow-v0 415 89 90

clgen-v0 697 149 150

csmith-v0 222 48 48
llvm-stress-v0 697 149 150

cbench-v1 0 0 11

Curated chstone-v0 0 0 12
Hrate mibench-vl 0 0 40
npb-v0 0 0 121

Total - 728,219 4,495 4,683




Experiments

» Baselines
 Oracle: the best in the coreset
» Top-45: only allow 45 steps in using the coreset
* RL-PPO: proximal policy optimization

» Q-value-rank: directly learn the values of the pass
sequences in the coreset

« BC: behavior cloning; classification over the
coreset

* NVP: normalized value prediction

* For Top-45, Q-value-rank, BC, and NVP

» The budget of 45 steps allows us to use roughly 4
pass sequences; roll out them one by one

 Truncate the last sequence applied (not to exceed
the budget)

* GNN: GCN, GGC, GIN, GAT, GEAN

Method #passes 197 (%) I 8 o
Compiler (-0z) 97 0 1.000
Autophase-PPO 45 -16.3195 0.96040.036
GCN-PPO 45  -103410 0.998410.003
GGC—PPO 45  -123401  0.98810.001
GIN-PPO 45  -15.1459 0.97240.029
GAT-PPO 45 -65.7:|:40_1 0.806:|:0_132
GEAN-PPO 45  -12.0406 0.99710.002
Autophase-0Q 45 -3.940.2  1.006-0.002
GEAN-Q 45 07413 1.01640.012
Autophase—-BC 45 294101 1.04510.000
GEAN-RBC 45 2.8+0.6 1.04540.007
Autophase—-NVP 45 40104 1.05640.005
GCN—-NVP 45 4-3i0.1 1.058:&0,001
GGC-NVP 45 44502 1.05940.002
GIN-NVP 45 43103 1.058+0.003
GAT-NVP 45 4-5i0.2 1.060:&0,001
GEAN-NVP 45 45401 1.05940.000
Top-45 45 -7.5 0.992
Oracle 625 5.8 1.075




Analysis

» Learned Q values
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Ablations

* Temperature
« A smaller temperature works better

 Essentially, it becomes a multi-class
classification for a smaller temperature
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