Learning Compiler Pass Orders using Coreset and Normalized Value Prediction

Youwei Liang*, Kevin Stone* , Ali Shameli, Chris Cummins, Mostafa Elhoushi, Jiadong Guo, Benoit Steiner, Xiaomeng Yang, Pengtao Xie, Hugh Leather, Yuandong Tian

*co-first author

Problem Definition: Compiler Pass Ordering

• Compile a program with a sequence of optimization pass: LLVM

IR: intermediate representation

- Exemplar passes
 - Dead code elimination: e.g., remove assignments that are never used
- Order matters
 - Some passes facilitates the use of some other passes
 - -reg2mem
 - Some passes clean up the code after using certain passes
 - -dce
- In our paper, we target at minimizing code size

Challenges in Compiler Pass Ordering

• Manual optimization by humans

• Expert passes: -O3, -Oz

- Prior machine learning methods
 - Require an excessive budget at compile time (need to enumerate many passes)
 - Need to try many passess
 - Fail to generalize to unseen programs
 - Train/test on the same benchmark programs
 - Very small test set

Key Ideas of Our Approach

- Key ideas
 - We don't search good passes sequentially
 - Directly find a universal core set of pass sequences (termed coreset)
 - Make decision on top of this different action space to avoid the challenge of sparse reward
- The coreset
 - Optimizes most programs
 - Requires only an upfront search cost
- The policy
 - Learns to predict the *relative* performance of coreset sequences
 - Apply the optimal coreset sequence to compile new programs at inference

Environment Setup

- Perform pass optimization with CompilerGym
- CompilerGym <u>https://compilergym.com/</u>
 - It provides a reinforcement learning (RL) environment, using similar APIs to OpenAI Gym
 - Call the APIs to obtain features/observations of a program
 - At each step, choose one of the 124 passes to apply to a program. Then environment provides the new size after applying the pass.
- Problem setup
 - Given a budget in terms of the number of passes, say 45, maximize the **size reduction** compared to the initial program
 - Allow to cache the intermediate programs at each step, so the maximum size reduction can be obtained in middle

Our Method: An Overview

- Coreset Optimization
 - Finding *n* candidate pass sequences
 - Finding the coreset S with a greedy algorithm
- Normalized Value Prediction
 - Given program feature, train a GNN model to output the probabilities of selecting a sequence in the coreset

Coreset Optimization

- For each program, perform random search to find candidate pass sequences
- Construct a reward matrix $R \in \mathbb{R}^{N \times M}$: size reduction of N = 17500 program against M = 17500 candidate pass sequences
- Objective:

 $\max_{|S| \le K} J(S) = \sum_{i=1}^{N} \max_{j \in S} r_{ij}$

- K = 50: cardinality of coreset
- Initialize $S = \emptyset$
- At each step, add a new pass sequence index into S

$$j_t := \arg \max_{j \notin S_{t-1}} J(S_{t-1} \cup \{j\})$$

Key finding: a lot of programs can be optimized by a small number of pass sequences

Program encoding

- Input feature: ProGraML graph
- Encoder: graph neural network (GNN)
- The model selects a few **pass sequences** from the coreset to try out in the program
- This is DIFFERENT from the common practice of selecting a single pass at a time

- We also tried another input feature: Autophase vector
 - Consist of the number of certain instructions, etc
 - Use MLP for encoding

Normalized Value Prediction

• Normalize the rows of the reward matrix on the *coreset*

 $\boldsymbol{v}^p = \operatorname{Softmax}(\boldsymbol{r}^p/T)$

(*p* denotes a program)

- *T* is a temperature
- Loss: cross entropy between model output a^p and the normalize values v^p

$$\mathcal{L}(oldsymbol{a}^p,oldsymbol{v}^p) = -\sum_{j=1}^K v_j^p \log a_j^p$$

Key finding: a program can be optimized by several pass sequences (resulting in same size reduction)

A "slim" reward matrix

Coreset index

Experiments

- Datasets: a large number of diverse programs
- Allow maximum of 45 compilation passes
- Evaluation: how much the algorithm is better than Oz in terms of *code size* (IR instruction count)
- I_p^{Oz} : resulting IR instruction count of program p after applying -Oz
- $I_p^{\pi_{\theta}}$: resulting IR instruction count of program p using algorithm π_{θ}
- Mean Improvement Over Oz

$$\bar{I}^{Oz} = \text{MeanOverOz} := \frac{1}{|\mathcal{P}|} \sum_{p} \frac{I_p^{Oz} - I_p^{\pi_{\theta}}}{I_p^{Oz}}$$

• Geometric Mean Improvement Over Oz

$$\bar{I}_{G}^{Oz} = \text{GMeanOverOz} := \left(\prod_{p} \frac{I_{p}^{Oz}}{I_{p}^{\pi_{\theta}}}\right)^{\frac{1}{|\mathcal{P}|}}$$

Туре	Dataset	Train	Val	Test
Uncurated	anghabench-v1	707,000	1,000	2,000
	blas-v0	133	28	29
	github-v0	7,000	1,000	1,000
	linux-v0	4,906	1,000	1,000
	opencv-v0	149	32	32
	poj104-v1	7,000	1,000	1,000
	tensorflow-v0	415	89	90
	clgen-v0	697	149	150
	csmith-v0	222	48	48
	llvm-stress-v0	697	149	150
Curated	cbench-v1	0	0	11
	chstone-v0	0	0	12
	mibench-v1	0	0	40
	npb-v0	0	0	121
Total	-	728,219	4,495	4,683

Experiments

• Baselines

- Oracle: the best in the coreset
- Top-45: only allow 45 steps in using the coreset
- RL-PPO: proximal policy optimization
- Q-value-rank: directly learn the values of the pass sequences in the coreset
- BC: behavior cloning; classification over the coreset
- NVP: normalized value prediction
- For Top-45, Q-value-rank, BC, and NVP
 - The budget of 45 steps allows us to use roughly 4 pass *sequences*; roll out them one by one
 - Truncate the last sequence applied (not to exceed the budget)
- GNN: GCN, GGC, GIN, GAT, GEAN

Method	#passes	$\bar{I}^{Oz}(\%)$	\bar{I}_G^{Oz}
Compiler (-Oz)	97	0	1.000
Autophase-PPO	45	$-16.3_{\pm 9.8}$	$0.960_{\pm 0.036}$
GCN-PPO	45	$-10.3_{\pm 1.0}$	$0.998_{\pm 0.003}$
GGC-PPO	45	$-12.3_{\pm 0.1}$	$0.988_{\pm 0.001}$
GIN-PPO	45	$-15.1_{\pm 5.9}$	$0.972_{\pm 0.029}$
GAT-PPO	45	$-65.7_{\pm 40.1}$	$0.806_{\pm 0.132}$
GEAN-PPO	45	$-12.0_{\pm 0.6}$	$0.997_{\pm 0.002}$
Autophase-Q	45	$-3.9_{\pm 0.2}$	$1.006_{\pm 0.002}$
GEAN-Q	45	$0.7_{\pm 1.3}$	$1.016_{\pm 0.012}$
Autophase-BC	45	$2.9_{\pm 0.1}$	$1.045_{\pm 0.000}$
GEAN-BC	45	$2.8_{\pm 0.6}$	$1.045_{\pm 0.007}$
Autophase-NVP	45	$4.0_{\pm 0.4}$	$1.056_{\pm 0.005}$
GCN-NVP	45	$4.3_{\pm 0.1}$	$1.058_{\pm 0.001}$
GGC-NVP	45	$4.4_{\pm 0.2}$	$1.059_{\pm 0.002}$
GIN-NVP	45	$4.3_{\pm 0.3}$	$1.058_{\pm 0.003}$
GAT-NVP	45	$4.5_{\pm 0.2}$	$1.060_{\pm 0.001}$
GEAN-NVP	45	$4.5_{\pm 0.1}$	$1.059_{\pm 0.000}$
Top-45	45	-7.5	0.992
Oracle	625	5.8	1.075

Analysis

• Learned Q values

Ablations

- Temperature
- A smaller temperature works better
- Essentially, it becomes a multi-class classification for a smaller temperature

